Progetti Finanziati
La comprensione dei cambiamenti climatici repentini del passato (ACC) nell'Artico è fondamentale per la comprensione dei cambiamenti climatici in atto e dei loro sviluppi futuri. I processi che stanno alla base di queste rapide variazioni climatiche, tuttavia, non sono stati ancora pienamente compresi. Le carote di ghiaccio della Groenlandia archiviano importanti informazioni paleoclimatiche che possono essere estrapolate attraverso indicatori di varia tipologia. È possibile così ricostruire nel dettaglio l'estensione del ghiaccio marino nel passato, la circolazione atmosferica, l'aridità continentale nonché l'accumulo di neve fino a scale temporali sub-stagionali. In questo progetto, l'anatomia degli ACC sarà decifrata con un dettaglio temporale senza precedenti, ponendo particolare attenzione al ruolo dei segnali climatici legati alle polveri minerali trasportate in atmosfera. La chiave per sfruttare appieno questo archivio unico è l’elevatissima risoluzione temporale delle misure, che permetterà di ottenere informazioni con un livello di dettaglio non accessibile fino ad oggi. Grazie a una nuova combinazione di tecniche e all’altissima risoluzione delle misure, il progetto permetterà di progredire nella comprensione e nell’interpretazione delle impronte geochimiche e glaciochimiche archiviate nelle carote di ghiaccio portando alla creazione nuovi indicatori paleoclimatici che potranno essere impiegati anche in futuri progetti di ricerca su carote di ghiaccio.
L'esperimento ALPACA (ALaskan Pollution And Chemical Analysis), coordinato dall'Università dell'Alaska in Fairbanks, è il primo grande esperimento internazionale sulla qualità dell'aria nelle città artiche. La campagna sperimentale, che ha avuto luogo tra gennaio e febbraio 2022 a Fairbanks, ha cercato di delineare le cause degli eventi critici di inquinamento da particolato atmosferico (PM) delle città artiche nei periodi di alta pressione durante i mesi invernali. Sono state considerate le possibili sorgenti da combustione (dal riscaldamento domestico alle centrali termiche) e le variabili meteorologiche tipiche dei mesi freddi alle alte latitudini. Sono state inoltre caratterizzate le deposizioni nevose. Infine, il progetto ha coinvolto associazioni di cittadini interessate al miglioramento della qualità dell'aria a Fairbanks, nonché enti regolatori e di monitoraggio (EPA).
The Arctic is experiencing the most dramatic impact of t he present climate change, amplifying and driving changes elsewhere in the Earth system. This “Arctic Amplification” is due to peculiar feedbacks between climate forcings and environmental responses, especially involving large changes in surface albedo, over land, sea and long-range transport patterns of air pollutants. A detailed knowledge of the atmospheric processes at different scales can help to define the main causes of “Arctic Amplification”. In this scenario, vertical structure of the Arctic Boundary Layer (ABL) is a key element that can influence aerosol size distribution, chemical composition and its Svalbard is Norway’s northernmost region, and the archipelago is one of the northernmost land-areas in the world. In this archipelago is Ny-Ålesund, a small research town hosting several national and international institutions and their long-term research programmes and projects. This site is a perfect opportunity to investigate ABL thanks to the availability of these three essential facilities in the same place: Gruvebadet (GVB) atmospheric observatory, Zeppelin (ZEP) station and Amundsen-Nobile Climate Change Tower (CCT).
GVB (78.918°N, 11.895°E; 61 m above sea level) is located 800 m south-west of the Ny-Ålesund and it is managed by ISP-CNR. It is an atmospheric laboratory dedicated to the chemical and physical monitoring of atmospheric aerosol begun in 2010 and is still ongoing; the sampling was normally performed from March to October for each year, but since winter 2018/2019, all-year-round samplings have started. Moreover, several campaigns were performed using a tethered balloon equipped also with an optical particle counter (OPC) and meteorological sensors to investigate size-segregated particle samples at ground level and in the free atmosphere and to provide aerosol profiles in and above the boundary layer.
The ZEP observatory (78.908°N, 11.881°E; 474 m above sea level) is located at the top of the Zeppelin mountain, about 3 km from the coast of the fjord and 1 km from GVB. It is owned and managed by the Norwegian Polar Institute and is part of the Global Atmospheric Watch network. Compared to stations closer to sea level, the ZEP station is less affected by local anthropogenic aerosol and pollution sources and by local air flow phenomena such as katabatic winds.
The CCT was installed at the end of 2009 about 2 km west of Ny-Ålesund on the southern coast of Kongsfjorden. The tower is 34-m high and the main sensors are sonic anemometers and low-frequency thermo-hygrometers and anemometers. CCT was conceived to provide a scientific platform for atmospheric monitoring activities in an orographically complex area, to complement other researches, and to host new experiments and instruments devoted to the study of the ABL dynamics, in different atmospheric conditions.
Aerosol plays a relevant role on climate by scattering and absorbing the solar radiation and by influencing cloud formation (i.e. cloud condensation nuclei). Aerosol particles are transported from the middle latitude influencing the composition of Arctic atmosphere, with consequent effects on cloud formation, albedo or sea ice. Several aspects remain poorly known, representing the challenge of the recent aerosol research. For example, organic compounds have notable consequences for atmospheric chemistry and cloud formation, but limited information about the sources of key compound classes such as sugars were produced. On the other hand, the positive forcing of black carbon (BC) is well known because it enhances light absorption processes in the atmosphere, especially in the Arctic, and after its deposition over the glaciers, where triggers and accelerates melting processes. However, the dynamics of BC entertainment in the ABL are still a poorly understood process and may have a wide variability depending on local conditions.
The key challenge of BETHA-NyÅ is to set up an inter-comparison aerosols measurement experiment between GVB and ZEP stations to understand the ABL dynamic effects on the aerosol composition in the Arctic region. The composition data obtained at the two stations will be integrated with meteorological information obtained at CCT and through radiosondes. The sampling alignment in a long-term scenario will be crucial to obtain statistical significant conclusions about the impact of ABL on the atmospheric composition in the Arctic.
Il progetto CHANGE si pone come obbiettivo generale il miglioramento della conoscenza della biodiversità marina e del funzionamento degli ecosistemi in un’area ancora scarsamente esplorata della regione Artica a nord del 77° parallelo lungo la costa orientale della Groenlandia dove, negli ultimi 40 anni, si è registrata una significativa contrazione nell’estensione del ghiaccio marino stagionale. La descrizione tassonomica delle comunità è integrata delle proprietà funzionali, definite su base ecomorfologica e mediante lo studio di isotopi stabili, al fine di elucidare relazioni trofiche tra specie ittiche e con gli altri elementi dell’ecosistema, e per valutare la ridondanza funzionale del sistema e la sua vulnerabilità al cambiamento. La ricerca include inoltre una valutazione dello stato di borealizzazione delle comunità ittiche nell’area di studio, che potrà fornire elementi utili ad una migliore comprensione delle potenzialità di ecosistemi artici di supportare sia specie artiche già residenti che nuove specie arrivate da acque temperate. Queste informazioni saranno complementate da dati relativi a parametri ambientali, incluso lo stato di contaminazione. Dal punto di vista operativo, il progetto ha beneficiato dell’opportunità di utilizzare la piattaforma logistica italiana N/R Laura Bassi, a bordo della quale è stata effettuata una campagna di raccolta dati e campioni nell’agosto 2021. Ulteriori attività di campionamento potranno essere effettuate nell’agosto 2022 a bordo della nave norvegese R/V Helmer Hanssen, grazie alla collaborazione con ricercatori dell’Università di Tromsø nel quadro del “TUNU Programme: Arctic Ocean Fishes– diversity, adaptation & Conservation”.
The project aims at quantifying the impact of precipitation on the surface distribution of ice and snow and on the surface radiation budget. The goal will be achieved by means of an integrated approach based on ground-based, in situ, and satellite-based measurements in combination with a regional climate model. Observations will be used also to improve model representations of key physical processes. Field activities will take place at the Thule High Arctic Atmospheric Observatory, Greenland.
Il progetto PNA-IRIDYA include attività di acquisizione, analisi dei dati e loro integrazione per fornire gli elementi su cui basare modelli numerici. L’attività di acquisizione dati è avvenuta durante l’agosto 2021 nel corso della campagna oceanografica svoltasi nell’Artico a bordo della Nave Polare Laura Bassi. Durante la campagna sono stati acquisiti nuovi dati acustici di batimetria attraverso multibeam e profili di sub-bottom. L’attività di acquisizione sismica prevista dal progetto non ha ricevuto il permesso a procedere dalle autorità norvegesi. Parte di tale acquisizione è stata tuttavia portata avanti dai partner norvegesi (gruppo CAGE dell’Università di Tromsø) che forniranno i dati al PI di IRIDYA. La nuova acquisizione del record geologico include carote di sedimento ottenute con carotiere a pistone e multi-corer che sono state prelevate in 3 siti principali con lunghezze di 5– 8 m. I dati geofisici (sismica e acustica) verranno processati presso OGS per la realizzazione di carte batimetriche e profili sismici e acustici per la caratterizzazione dell’architettura di deposizione del margine occidentale delle Svalbard. Le carote di sedimento verranno analizzate con metodi di analisi continua e su campioni individuali per la caratterizzazione e ricostruzione paleo-ambientale e paleo- climatica del registro sedimentario. L’integrazione dei dati verrà fatta a tre livelli: integrazione degli indicatori misurati sulle carote di sedimento per una ricostruzione armonica dei processi di cambiamento paleo-oceanografico/paleo-climatico; inter-correlazione dei dati geofisici e geologici fornendo un quadro dinamico delle interazioni tra la calotta delle Svalbard-Barents Sea e l’oceano durante gli ultimi 60-mila anni; confronto tra il registro ottenuto dalle carote di ghiaccio e le carote marine per definire l'entità delle oscillazioni paleoclimatiche sui transetti terra-mare (tempi di reazione tra superficie terrestre e il sistema ghiaccio-oceano). Il “numerical modeling” permetterà di ricostruire le modalità di ritiro glaciale tenendo presente le informazioni dirette ottenute dal record geologico e dalle evidenze geofisiche.
How the Arctic Carbon Cycle will change in a warming scenario holds the attention of the entire international community. Sea ice loss, permafrost thaw and ocean acidification are some examples of the expected perturbations. To support the community working on the Arctic Carbon complexity, we initiated the open CASCADE digital infrastructure which enables pan-Arctic biogeochemical analyses, supports ecology studies and facilitates a wide array of models. This proposal promotes the next phase of the CASCADE by reinforcing its pan-Arctic dimension and reducing the current gaps.
SCOPRI IL PROGETTO